# Cadmium Aquatic Life Ambient Water Quality Criteria Briefing for ACWA Monitoring, Standards & Assessment Committee January 20, 2016

### I. Overview of 2015 Draft Cadmium Aquatic Life Criteria Update

- Current draft criteria update revises acute and chronic freshwater and estuarine/marine criteria
- Values were last updated in 2001; revisions were also conducted in 1996, 1985 and the original criteria dating back to 1980
- Criteria revisions are based on new toxicity test data; no major changes in scientific approach (Table 1);
- Have substantially more data

Table 1. Number of tested aquatic species included in criteria derivation over time

|      | Freshwater | Freshwater | Estuarine/Marine | Estuarine/Marine |
|------|------------|------------|------------------|------------------|
|      | Acute      | Chronic    | Acute            | Chronic          |
| 1980 | 29         | 13         | 31               | 1                |
| 2001 | 65         | 21         | 61               | 2                |
| 2015 | 101        | 27         | 94               | 2                |

- Based on the amount of data, we were able to derive acute and chronic freshwater values and estuarine/marine acute values using a sensitivity distribution (minimum requirements met – 8 taxa for acute; 3 for chronic values)
- Exception is for estuarine/marine chronic where we used and Acute-to-Chronic ratio based on availability of chronic marine values (data were available for mysid shrimp)
  - ACR ratio was developed based on 7 genus-level ACRs: five freshwater fish species, three freshwater invertebrate species, two acutely sensitive mysid species
- Freshwater acute and chronic are hardness-dependent (as in previous revisions)
- Direct exposure effects to aquatic animals remains focus of evaluation
  - Direct exposure effects occur at lower concentrations than bioaccumulation effects
- Criteria values are very close to what they were in 2001, indicating previous criteria were robust
  - Freshwater (based on a hardness of 100 mg/L as CAC03
    - Draft acute value increases from 2.0 in 2001 to 2.1 ug/L
      - Lowered to protect the commercially and recreationally important rainbow trout, as per the 1985 Guidelines. Acute value prior to lowering is 3.0 µg/L.
    - Draft chronic value increases from 0.25 to 0.73 ug/L
  - Saltwater
    - Draft acute value decreases from 40 to 35 ug/L
    - Draft chronic value decreases from 8.8 to 8.3 ug/L

Table 2. 2015 updated criteria values compared to the existing 2001 current criteria, based on a hardness equation

| Matarhadu Tura | 2015 AWQC Update            | 2001 AWQC Update            |
|----------------|-----------------------------|-----------------------------|
| Waterbody Type | (dissolved cadmium in μg/L) | (dissolved cadmium in μg/L) |

|                                                                    | Acute<br>(1-hour) | Chronic<br>(4-day) | Acute<br>(1-day) | Chronic<br>(4-day) |
|--------------------------------------------------------------------|-------------------|--------------------|------------------|--------------------|
| Freshwater<br>(Total Hardness = 100<br>mg/L as CaCO <sub>3</sub> ) | 2.1 <sup>a</sup>  | 0.73               | 2.0 ª            | 0.25               |
| Estuarine/marine                                                   | 35                | 8.3                | 40               | 8.8                |

<sup>&</sup>lt;sup>a</sup> Lowered to protect the commercially and recreationally important rainbow trout, as per the 1985 Guidelines, Stephen et al. Acute value prior to lowering is 3.0 μg/L.

#### • Current Status

- o The criteria document is currently out for 60 day public comment
- The comment period will end on February 1<sup>st</sup>.
- o Prior to this draft publication the draft criteria document has undergone
  - Two separate Agency reviews
  - One contractor led external expert peer review
    - Comments and response to comments from the expert peer review are posted in the docket
- o The cadmium draft 304(a) criteria targeted for finalization on March 30, 2016

# II. Detailed information on sensitive species and new data

# 1. Freshwater Criteria Development

#### A. Acute

- i. Fish (primarily salmonids) are drivers of the acute criterion value
- ii. 75 freshwater genera for acute toxicity (compared to 55 in 2001)
  - a. Most of the new genera are invertebrates (14 of 19 added genera)

Table A1. Most acutely sensitive freshwater aquatic organisms tested (ranked most to least sensitive)

| Rank | Species                             | GMAV (μg/L) |
|------|-------------------------------------|-------------|
| 1    | Bull Trout                          | 4.750       |
| 2    | Mottled Sculpin                     | 4.926       |
| 3    | Striped Bass                        | 5.883       |
| 4    | Brown Trout                         | 6.066       |
|      | Chinook Salmon (SMAV = 9.888 μg/L)  |             |
|      | Rainbow Trout (SMAV = 4.468 μg/L)   |             |
| 5    | Coho Salmon (SMAV = 14.34 μg/L)     | 7.841       |
|      | Cutthroat Trout (SMAV = 5.966 μg/L) |             |

#### B. Chronic

i. Invertebrates are drivers of chronic value

- ii. 20 freshwater genera for chronic toxicity (compared to 16 in 2001)
- iii. 3 of 4 newly-added genera are invertebrates
  - a. Benthic worm (Lumbriculus)
  - b. Freshwater snail (Lymnaea)
  - c. Freshwater mussel (Lampsilis)
  - d. Freshwater fish-sculpin (Cottus)

Table A2. Most chronically sensitive freshwater aquatic organisms tested

| Rank | Species                  | GMCV (μg/L) |
|------|--------------------------|-------------|
| 1    | Amphipod, H. azteca      | 0.7454      |
| 2    | Cladoceran, Ceriodaphnia | 1.293       |
| 3    | Mottled sculpin          | 1.721       |
| 4    | Midge, Chironomus        | 2.000       |

#### 2. Estuarine/Marine Criteria Development

#### A. Acute

- i. Invertebrates are the most sensitive species
  - A. Three invertebrates and striped bass (*Morone saxatilis*) are drivers of FAV, with moon jellyfish (*Auerelia aurita*) newly-added to the calculation of FAV
- ii. 79 estuarine/marine genera for acute toxicity (compared to 54 in 2001)
  - A. Most of the added general are invertebrates (20 of 24 added genera)

iii.

- iv. Estuarine/marine acute value decreased from 40  $\mu$ g/L to 35  $\mu$ g/L based primarily on addition of two of the new genera
  - a. Opossum shrimp (Neomysis)
  - b. Moon jellyfish (Aurelia)

Table A3. Most acutely sensitive saltwater aquatic organisms tested

| Rank | Species                                      | GMAV (μg/L) |
|------|----------------------------------------------|-------------|
| 1    | Harpacticoid copepod (Tigriopus brevicornis) | 29.14       |
| 2    | Moon jellyfish (Aurelia aurita)              | 61.75       |
| 3    | Mysid (Neomysis integer)                     | 65.25       |
| 4    | Mysid (Americamysis bahia and bigelowi)      | 67.39       |
| 5    | Striped bass (Morone saxatilis)              | 75.0        |

# B. Chronic

- i. No new chronic toxicity data available since 2001
- ii. Estuarine/marine CCC increased from 8.8  $\mu$ g/L to 11  $\mu$ g/L based primarily on a decrease in the acute-chronic ratio with the incorporation of two freshwater species in the acute-to-chronic ratio
  - a. Mottled sculpin (Cottus bairdii)
  - b. Fatmucket clam (Lampsilis siliquoidea)

Table A4. Saltwater aquatic organisms tested for chronic effects

| Rank Species | GMCV (μg/L) |
|--------------|-------------|
|--------------|-------------|

| 1 | Mysid (Americamysis bahia and bigelowi) | 8.449 |
|---|-----------------------------------------|-------|
|   |                                         |       |